
tion; $ = (Tw-- T)/(Tw-- To), m = u/uo, relative temperature and velocity, respectively; 
6 , 6T, thickness of the dynamic and thermal boundary layers, respectively; e~ = (6/6T)nT n, 
coefficient of nonsimilarity of velocity and temperature profiles; n and nT, indices for power 
law approximation to the velocity and temperature profiles, respectively; T w and To, tempera- 

tures of the wall and of the main air flow. 

1. 

2. 
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N~dERICAL ANALYSIS OF LAMINAR FLUID FLOW IN A "POROUS PIPE 

IN A PIPE" HEAT EXCHANGER 

V. A. Babenko and D. K. Khrustalev UDC 532.517.2:536.27 

The change in the velocity of liquid overflow through the wall of a porous tube 
along the length of a system as a function of the input flow parameters and the 
permeability of the inner tube walls is investigated. 

A flow with variable rate along pipes of different configurations was recently the theme 
of a considerable number of publications, which has certainly been caused by the demands of 
engineers analyzing such flows. Motion with mass varying along the path is realized in col- 
lector systems, e.g., in heat exchangers with porous elements, in heat pipes, etc. Laminar 
fluid flow in a porous pipe with constant suction along the length has been studied in [1-5]. 
A flow with rate of mass delivery or extraction varying according to a known law has been 
studied considerably less [6-8]. A more complex case is examined in this paper -- flow with 
variable mass in two channels separated by a permeable baffle. The velocity of overflow from 
one channel to the other is not known and is determined from the solution of the problem. The 
viscosity and density of the fluid are hence considered constant, mechanical energy dissipa- 
tion into heat is neglected, and the geometric dimensions of the system are such that the 
channel length is substantially greater than its diameter. 

Laminar incompressible fluid flow in a circular pipe with permeable walls of a porous 
material inserted in a coaxial pipe of larger radius with impermeable walls is considered. 

Under the effect of a pressure drop on the porous pipe wall, the fluid will be sucked 
out of the inner channel into the outer or conversely. The pressure drop on the wall and the 
overflow velocity depend on the axial coordinate. Let us take Darcy's law for porous mate- 
rial as the dependence of the overflow on the pressure drop. The suction rate for a homo- 
geneously porous wall with constant thickness can be expressed as follows according to 
Darcy' s law: 

K ( P , , = .  - -  Pl,=b) (1 )  
vl~=~ = tta In b 

a 

The f l o w s  i n  t h e  i n n e r  c h a n n e l  a n d  i n  t h e  a n n u l a r  gap a r e  d e s c r i b e d  by t h e  s t a t i o n a r y  N a v i e r -  
Stokes equations: 

Ou ~ i, ( uti) dr - oti~ OU (i) --__I Op(i) 

Ox 0--7- ~-: p Ox + v - -  

u (o do(o do(o 1 Op(O ( 
Ox + v(O - -  -- + v ~ , - -  Or o Or 

c~u(O 1 Ou (i) 32u(O \ 

O x '  + 4- - -  - ) , r Or Or ~ " 

02o(i) I do (i) O~v (o "~ 

Ox ~ + - -  + - ) r Or Or 2 

(2) 
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r ,+  (rv(O)=O, i = l ,  2, 0bt( o 

Ox (3) 

where the superscript i = 1 refers to the inner, and 2 to the outer channel, and (3) is the 
continuity equation. 

It is assumed that the mean radial velocity is small compared to the mean axial veloci- 
ties in both channels, i.e., ~/] << i. Applying an analysis on the order of smallness to the 
Navier-Stokes equations, we obtain equations agreeing in form with the boundary-layer equa- 
tions in a first approximation, as is usual. 

Let us introduce the following notations: 
vX U = - -  Z = - -  R =  r I1 

a~l,o, a up, 

P = P A = Kuot V = v_&a. 
pu~t ~ In b 

a 

(4) 

We then obtain a system of Prandtl equations in cylindrical coordinates for the dimensionless 
quantities: 

OU(O OU<O dP~O O~U(O 1 OU ~> (5) 
U"> + V"> = - -  -4 + , 

Oz OR dz OR ~ R OR 

OU(O 
R - - +  

Oz 
(RVCO) = O, i --- 1, 2. ( 6 )  

Let us add the mass conservation laws in integral form for each domain to the boundary-layer 

equations : 

for the inner channel 

for the annular gap 

! 

dz . 
o 

UP) RdR '~"~ ~ "  -- V lR= l  * 
(7) 

for the porous wall 

c 

a 

dzd ! U<2) RdR = V~2)m='~'b ' 

O~ 

(8) 

b V(=) = ~k~=l . (9) 

Let us write the boundary conditions reflecting the symmetry of the problem and the ad- 

hesion of the fluid to the walls 

vl? Lo=O, ~ 1 o. o, = ---- U b = 0, 
OR a~o l a = ~  "~a=-~ (i0) 

V ~ )  " _ , , i =  1, 2,  = 0, ft (R) v120= r (m a 
| R ~ - ~  a Uol 

where  f i ( R ) ,  + i (R)  a r e  f u n c t i o n s  g i v i n g  t h e  v e l o c i t y  p r o f i l e s  u ( i )  and v ( i )  a t  t h e  e n t r a n c e .  

Let us define the Reynolds numbers used later for the overflow and the longitudinal velo- 

cities in both domains: 

tic,, a ~c,~ V e' -- vl.=aa = V ~ i , ,  R e , = -  Rez = (11)  
Rer = v v ' v 

The p r o b l e m  was n u m e r i c a l l y  s o l v e d  by u s i n g  t h e  f i n i t e - d i f f e r e n c e  method .  An i m p l i c i t  
f i n i t e - d i f f e r e n c e  a p p r o x i m a t i o n  o f  t h e  e q u a t i o n s  which  a s s u r e d  t h e  s t a b i l i t y  f o r  any r e l a t i o n -  

516 



ship between the z and R spacings for U ~.~ 0 [2] was used for the solution. The equations were 
approximated on a uniform mesh in each domain. The spacings along the radius in the inner and 
outer channels were selected different. The velocities and pressures were considered known 
for any k and ~ in the layer j and above in the flow. The flow is unknown on the (j + l)-th 
layer. There were no iterations in the nonlinearity. 

Let us use the following finite-difference representations of the terms in (5) and (6) 
for the (j + l)-th layer: 

OU _ U~+i.~-- UI.~ OU UI§ U1+f.~,_i 

Oz hz  ' OR = -  2AR ' 

O~U U.f+l.~.~l - -  2Ul+l,g ~- U.i+t.h_i aP P/+t -- P~ 

OR ~ (AR) ~ ' Oz Az 

C o n s e q u e n t l y ,  we o b t a i n  a s y s t e m  o f  a l g e b r a i c  e q u a t i o n s  f rom ( 5 ) :  

o: r~(l) , r~(~) - - _  U(~ ) O P  (t) 1./r r /+1 ,~--~ -7- ~1,~ ~af+l,b- -~- YJ./t / + l , k + l  = (~),k 
Oz 

(12)  

(13) 

where 

Op~) 

Oz 

1 V;.~ 1 
O~ j , i --=- 

2R~AR 2AR (AR) ~ 

- -  , UI  
2 ~ - ~ z "  ' 

V?- I 1 U~; 
YJ,i = 2AR (AR) 2 2RiAR , 0;,.----- Az ' 

f o r  t h e  d o m a i n  l ,  i = k = 1 ,  2 ,  3 . . . .  , n and  f o r  t h e  d o m a i n  2 ,  i = t = 0 ,  1 ,  2 ,  3 ,  

Resolving the indeterminacy by L'Hospital's rule for R = 0, we obtain 

i.0 -- --, ?Lo=0.  ~i.o = A---f- + (AR) ~ ' ~J,o := (AR)' ' O j . 0  = U~AzO 

Let us write the continuity equation (6) in finite-difference form: 

(i) (i) t) ~U (i) ,,(i) lz(i) i/(i) r~ 
R~(Ui+1.k--U~,~)+ ~x~§ i+l.~+~--ui.~4-1) + ~i+l.k'rl R n + t - - - i + ~ . ~  ~ 0, 

. . . . . . . . . . . .  2hz  .... AR 

. . . ,  n w h i l e  k = 0 ,  1 ,  2 ,  . . . ,  m f o r  i = 2.  for i = l, k = i, 2, 
for R = O, we have 

Summing (15) and (16) 

U(o (i) 1t(D 71(1)  2Vi+L~ 1+1.1 ~ U i + l . o - - ' - ' l , ~ - - v l . o  + _ _  
2Az AR 

we obtain 

Applying L'Hospital ' 

(14) 

(15) 

s rule 

== 0. (16) 

for the inner channel and taking into account that 

p ( l )  n (2 )  ,, 
V;+~.~+t ~- V)R=I A (-~+1 - -  r i + l t ,  

n n 

- -  t r ; + l - - - i + . +  ~ R ~ i + , . ~ + ~ / + ~ , ~ +  4n ~i+1,0= A = a R ~ / ' ~ + ~ n  1,1 + 4n j,o. AR k=~ 

R e l a t i o n s h i p  (17)  e x p r e s s e s  t h e  law o f  c o n s e ~ a t i o n  o f  mass  i n  i n t e g r a l  f o m  f o r  t h e  
f i r s t  d o m a ~  a n d  t h e r e f o r e  c o r r e s p o n d s  t o  ( 7 ) .  R e l a t i o n s h i p  (16)  i s  n o t  u s e d  l a t e r ;  (15)  
and (17) can be considered linearly independent. 

Analogously, fr~ (15) we have an expression reflect~g the mass conservation in the an- 
nular gap 
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m m 

_ - -  ~p(l)  r~(2) , , R z U  ~~ RzU~2~). (18) 
A R  ~ = I  = 

We have  t h e r e f o r e  o b t a i n e ~  @ sys t em  o f  a l g e b r a i c  e q u a t i o n s  ( 1 3 ) - ( 1 5 ) ,  ( 1 7 ) ,  (18) i n  
which  t h e  number o f  unknowns U~ 1J,  Ui z , V ( x )  V (2~  P(~) p (Z)  k ' l ' ' a g r e e s  w i t h  t h e  number o f  
e q u a t  i o n s .  

seek the velocities U (~), U~ 2) in the form of a sum of Let us two components: 

i+t.~ ---- ~V/+l.k-r- Oz , /+z.* = lvi+t.t " t  w i+ld ~ (19) 

Substituting these expressions into (13), (14) for N (x), N (~), W (~), W (2), we obtain four 
systems of algebraic equations 

rv(i) ~ 
�9 " ~'") yj  k N ) ~ t , ) ~ )  u / , k  ~z., ) , H ~ ,  . k - t  + pj.)~o,~+l,),  + = Az ' 

, ? J , k  W j + ~ , k + t  = - -  ~zf.)~WlO),v._, +[3f~W~i$,,.~+ ("  1, i----1, 2, (20)  

where the coefficients ~, B, y are the same as in (13) and (14). 

Directly at the walls ~ = y = 0, B = 1 for each of systems (20). 

By evaluating N (i) 11 It is convenient to solve system (20) by factorization. )w(i) and2)~L 
substituting (19) into(17) and (18), we obtain two equations with two unknowns P j+l and Vj+l" 

Having determined the pressure on the (j+l)-th layer in both domains, we find the longitudi- 
li) nal components of the velocity vector U from (19). We find the suction Reynolds number 

Rev-- V~ for a ' - -  known pressure drop on the porous wall. The velocities V~I),- Vi 2) ~ are de- 

termined from recursion relation (15). 

After this we go over to the next layer j and repeating the process compute the velocity 
field for the whole structure in this manner. 

The problem was solved for a heat exchanger with the following geometric dimensions: a = 
9 �9 i0 -a m; b = 20 - i0 -3 m; c = 25 i0 -a m; L = 3 m. The main computational mesh had I00 
nodes along the length of the structure and 50 along the radius in the inner and annular 
channels. The change in the computation results did not exceed 1% when the mesh was reduced 
two and more times in size. 

A checking computation was performed for the case of impermeable inner tube walls and a 
steady velocity profile at the entrance. Hence, the velocity profiles were practically un- 
changed with distance from the entrance. The pressure drop in the inner channel agreed with 
the drop computed by the Poiseuille formula to hundredths of a percent accuracy. The results 
of variant No. 2 (see Table i) were compared with values of U, V, P, which were obtained by 
the method proposed by Weissberg [i] for the computation of the flow in a pipe with permeable 
walls with constant suction. It was hence assumed that Re V = 0.63 over the whole length of 
the structure. The differences in the values of U, V. P in the inner channel were less than 

0.5%. 

The proposed finite-difference scheme describes well such physical phenomena as pressure 
restoration and the occurrence of reverse flows under strong suction, and reconstruction of 
the pivotal velocity profile in the entry section. 

It can therefore be considered that the results obtained by this method have sufficient 

accuracy. 

The solution of the problem showed that the overflow distribution in the system depends 
essentially on the magnitude of the inner pipe wall permeability and on the velocity profiles 

at the entrance. 

Homogeneous (pivotal) and Poiseuille (steady) profiles were examined. The velocity field 
at the entrance is homogeneous if the structure is attached directly to the pressure source, 
a pump or plenum. 

A steady velocity profile holds when a sufficiently long section with impermeable walls 
adjoins the structure entrance. It is given by the formulas 
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TABLE i. Initial Data for Different Variants of the Computation 
for v = 0.2323 . 10 -6 m2/sec; p = 136 kg/m a 

Variant 
number 

1 
2 
3 
4 
5 
6 

K, Darcy 

0 
1 
5 

10 
20 
30 

Re, (x=O) 

1500 
1~0 
800 

1300 
1000 
1200 

Re~ (x=0) 

900 
900 

1700 
1600 
1670 
1850 

( p ( l ) _ p ( 2 ) )  ( x=0 ) ,  

N/I1"3 2 , 

3,75 
3,75 
0,75 
O, 375 
0,25 
0,125 

R 2 a 2 - b a  _{__ b~--c2 l n ( _ ~ l  
- 4 4 In (c/b) 

h ( R )  = 2s - -  RD, h ( R )  = Uo~ c2--b ~ b~+c 2 ' (21) 

4 in (c/b) 3 

for the homogeneous profile fi(R) = const(i), i = i, 2. 

Let us note that if the value V~A)_-lis known for the layer j, then by limiting ourselves 
to the case of zero longitudinal component of the velocity vector in the porous wall, we can 
find the magnitude of the velocity V in the porous domain as a function of the radius by 
means of the formula 

V(,) ,,-, (22)  V(R)= ,R=-~. 
The set of initial data for the different computational variants is presented in Table i. 

The dashed lines in the figures correspond to the pivotal profile at the entrance. 

Steady Entrance Velocity Profile 

Suction of the fluid from the inner channel causes a certain pressure rise while blowing 
in the outer channel specifies a pressure drop (Fig. i). The influence of suction on the 
pressure distribution reduces to tile fact that it is impossible to obtain strictly constant 
suction along the length for this structure. However, cases of almost constant suction are 
possible for small K (Fig. 2). 

Growth of suction along the length is necessary to stabilize the temperture field in the 
porous domain since the fluid moving away from the entrance will be heated somewhat because 
of internal heat liberation and the influx of heat from outside. Cases of growing suction 
are shown in Fig. 2. 

Pivotal Entrance Velocity Profile 

Reconstruction of the velocity field occurs upon giving a homogeneous velocity profile 
at the entrance, which results in substantial differences in the overflow velocity as com- 
pared with the case considered above. Upon withdrawal from the entrance, the velocity profile 

pU) D (#~ 
-,\ x.s a ] 

I,~ \ \  , 

1 [  c,, (~. \ '  , b .[ P - PT:z \ i ' "N ] 
1,2 \ 

" !i o ,.,>. z 2 i 

Fig. i. Pressure change in the inner (a) and outer (b) 
channels along the structure length. Numbers at the 
curves signify the variant. 
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t 
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Fig. 3 

Fig. 2. Change in magnitude of the suction along the structure length. 

Fig. 3. Velocity profiles U (I), U (2), V (~), V (2) at different distances from 
the entrance. Numbers at the curves signify the number of the layers along 
the system axis. 

in both domains gradually approaches the steady state, whereupon negative radial velocities 
occur (Fig. 3). 

Reconstruction of the velocity field results in the pressure at the entrance changing 
more sharply than at some distance away. The pressure gradient in the annular gap is greater 
than in the inner channel (Fig. ib). 

The total friction drag for this structure is considerably greater in the case of a piv- 
otal profile at the entrance than for the steady state. 

The presence of a fluid overflow results in a rise in the total friction drag; for Rev = 
0.63 it grew 8% as compared with the case of zero suction. 

Reconstruction of the velocity field complicates the prediction of the mode of mass over- 
flow from one channel to the other under different conditions at the entrance. Nevertheless, 
even in the case of a pivotal profile at the entrance the production of stable modes in this 
structure is possible (Fig. 2). 

In conclusion, let us note that the proposed computation method can be used for any en- 
trance velocity profiles for U I-0. 

NOTATION 

k, ~, radial indices in the inner and outer channels; j, index along the system length; 
n and m, quantity of partitions along the radius in the inner and outer channels; u and v, 
longitudinal and radial velocity, m/sec; U and V, dimensionless longitudinal and radial velo- 
cities~ p, pressure, N/m2; P, dimensionless pressure; K, permeability coefficient, Darcy; ~, 
~, coefficients of dynamic (kg/m.sec) and kinematic (m=/sec) viscosity; p, fluid density, 
kg/m3; a, inner radius of the porous pipe, m; b, outer radius of the porous pipe, m; c, inner 
radius of the outer pipe, m; L, structure length, m; uol and uo2, mean velocities at the 
entrance to the inner and outer channels, m/sec; r, radius, m; x, distance from the entrance, 
m; R, dimensionless radius; z, dimensionless distance from the entrance; Rel and Re2, Rey- 
nolds number for the inner and outer channels; Rer, suction Reynolds number. 

1. 
2. 

3. 
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COMPUTATION OF THE PRESSURE LOSS IN GAS FLOW THROUGH POROUS MATERIALS 

V. D. Daragan, A. Yu. Kotov, 
G. N. Mel'nikov, A. V. Pustogarov, 
and V. I. Starshinov 

UDC 532.546:537.527 

The development of methods of designing the heat shield of high-heat-stressed elements 
of power plants, particularly plasmatrons, by blowing coolant through permeable structure ele- 
ments requires a study, firstly, of the gas flow hydrodynamics in a porous material. The rise 
in the specific power of a plasmatron, and hence, the thermal loading of its elements, the 
use of blowing through a porous wall as a method of delivering the working body into the chan- 
nel [i], result in the need to use blowing with high specific gas mass flow rates. The fea- 
tures of flows with high specific mass flow rates are the predominance of inertial pressure 
losses over the viscous losses, the rise in the pressure losses at the entrance and exit from 
the porous wall, the necessity to take account of compressibility in describing the flow in 
a porous medium. A rise in the mass flow rate through a wall can result in "choking" of the 
flow, i.e., in a mode when the mass flow rate will remain constant for a constant pressure 
in front of the wall, independently of the pressure change at the exit. 

The flow in porous media with compressibility taken into account is inadequately inves- 
tigated. The influence of compressibility on the flow as a function of the porous material 
characteristics and of the magnitude of the mass flow rate is analyzed in [2, 3] on a capil- 
lary model of a porous body. The presence of "choking" effects was experimentally confirmed 
in [4, 5]. The influence of material porosity on the "choking" was considered in [6]. How- 
ever, actual porous materials are characterizaed by a complex pore space, a difference in 
pore and interpore passage sizes, convolutions of the pore channels, which constrain the ap- 
plication of an analysis based on a capillary model [2, 3]. 

The hydraulic drag of a porous wall can be determined from the expression [7] 

P 2 - - P ,  - - ~ .  2pv~ , (1)  

L d 

where  ~ i s  t h e  h y d r a u l i c  d r a g  c o e f f i c i e n t ;  P2 and P1,  gas  p r e s s u r e  a t  t h e  e n t r a n c e  and e x i t  
f rom a p o r o u s  w a l l  o f  t h i c k n e s s  L; and v and d ,  c h a r a c t e r i s t i c  v e l o c i t y  and g e o m e t r i c  s i z e .  
S e l e c t i o n  o f  t h e  c h a r a c t e r i s t i c  p a r a m e t e r s  f o r  a p o r o u s  m a t e r i a l  i s  a m b i g u o u s .  The f i l t r a -  
t i o n  v e l o c i t y  v f  = G/0F (G i s  t h e  mass  f l o w  r a t e  t h r o u g h  a p o r o u s  w a l l  w i t h  c r o s s - s e c t i o n a l  
a r e a  F a t  a n o r m a l  v e l o c i t y )  o r  t h e  mean v e l o c i t y  i n  t h e  p o r e s  Vp = v f / H ,  whe re  H i s  t h e  p o r -  
o s i t y ,  i s  t a k e n  as  t h e  c h a r a c t e r i s t i c  v e l o c i t y .  The p a r t i c l e  d i a m e t e r  dpa  r o r  t h e  mean p o r e  
d i a m e t e r  dp [7] i s  t a k e n  as  t h e  c h a r a c t e r i s t i c  d i m e n s i o n .  S i n c e  ~ i s  a f u n c t i o n  o f  n o t  o n l y  
t h e  m a t e r i a l  s t r u c t u r e  b u t  a l s o  t h e  f l o w  mode c = f ( R e ) ,  t h e  r e s u l t s  f o r  d i f f e r e n t  p o r o u s  
m a t e r i a l s  [7] i s  n o t  e x t e n d e d  s u c c e s s f u l l y  b y  means o f  ( 1 ) .  Flow d e v i a t i o n  f rom t h e  D a r c y  
l a w  o c c u r s  f o r  v a l u e s  o f  Re s u b s t a n t i a l l y  l e s s  t h a n  s h o u l d  have  b e e n  e x p e c t e d  on t h e  b a s i s  
o f  c o m p u t a t i o n s  f o r  m o d e l s  w i t h  c h a n n e l s  w i t h  t h e  c h a r a c t e r i s t i c  d i m e n s i o n s  dpa  r and dp 
t a k e n  s i n c e  t h e  p a s s a g e  t o  t h e  i n e r t i a l  f l o w  mode i s  d e t e r m i n e d  n o t  o n l y  by t h e  s i z e  o f  t h e  
p o r e  c h a n n e l s  b u t  a l s o  by  t h e  s h a p e ,  c o n v o l u t i o n ,  c o n t r a c t i o n s ,  and e x p a n s i o n s .  M o r e o v e r ,  
s u b s t a n t i a l  e r r o r s  a r e  i n h e r e n t  t o  t h e  v e r y  m e t h o d s  f o r  d e t e r m i n i n g  t h e  mean p o r e  and p a r t i c l e  
size. 

The two-term mode of writing the fluid motion equation 

dP 
- -  d- - - - f  - = ~ ~  + ~ ~  ( 2 )  

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 36, No. 5, pp. 787-794, May, 1979. 
Original article submitted June 12, 1978. 

0022-0841/79/3605-0521507.50 �9 1979 Plenum Publishing Corporation 521 


